Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration.
نویسندگان
چکیده
Fish--in contrast to mammals--regenerate retinal ganglion cell axons when the optic nerve is severed. Optic nerve injury leads to reexpression of proteins, which typically are first expressed in newly differentiated retinal ganglion cells and axons. Here we identified two new proteins of fish retinal ganglion cells, reggie-1 and reggie-2, with monoclonal antibody M802 and molecular cloning techniques. In normal fish, M802 stained the few retinal axons derived from newborn ganglion cells which in fish are added lifelong to the retinal margin. After optic nerve injury, however, M802 labeled all retinal ganglion cells and retinal axons throughout their path into tectum. Consistent with M802 staining, reggie-1 and reggie-2 mRNAs were present in lesioned retinal ganglion cells, as demonstrated by in situ hybridization, but were not detectable in their normal mature counterparts. In western blots with membrane proteins of the adult goldfish brain, M802 recognizes a 48x10(3) Mr protein band. At the amino acid level, 48x10(3) Mr reggie-1 and reggie-2 are 44% identical, lack transmembrane and membrane anchor domains, but appear membrane associated by ionic interactions. Reggie-1 and reggie-2 are homologous to 35x10(3) Mr ESA (human epidermal surface antigen) but are here identified as neuronal surface proteins, present on newly differentiated ganglion cells at the retinal margin and which are reexpressed in mature ganglion cells upon injury and during axonal regeneration.
منابع مشابه
Identification of teleost Thy-1 and association with the microdomain/lipid raft reggie proteins in regenerating CNS axons.
During regeneration, retinal ganglion cell axons in fish upregulate a cell surface protein that is recognized by the monoclonal antibody (mAB) M802. M802 antigen appeared to be linked to the intracellular, membrane-associated lipid raft/microdomain proteins reggie-1 and reggie-2 that were previously shown to be reexpressed in axon-regenerating neurons [Development 124 (1997), 577]. Here, we rep...
متن کاملReggies/flotillins regulate retinal axon regeneration in the zebrafish optic nerve and differentiation of hippocampal and N2a neurons.
The reggies/flotillins--proteins upregulated during axon regeneration in retinal ganglion cells (RGCs)--are scaffolding proteins of microdomains and involved in neuronal differentiation. Here, we show that reggies regulate axon regeneration in zebrafish (ZF) after optic nerve section (ONS) in vivo as well as axon/neurite extension in hippocampal and N2a neurons in vitro through signal transduct...
متن کاملUpregulation of reggie-1/flotillin-2 promotes axon regeneration in the rat optic nerve in vivo and neurite growth in vitro.
The ability of fish retinal ganglion cells (RGCs) to regenerate their axons was shown to require the re-expression and function of the two proteins reggie-1 and -2. RGCs in mammals fail to upregulate reggie expression and to regenerate axons after lesion suggesting the possibility that induced upregulation might promote regeneration. In the present study, RGCs in adult rats were induced to expr...
متن کاملThe 'lipid raft' microdomain proteins reggie-1 and reggie-2 (flotillins) are scaffolds for protein interaction and signalling.
Reggie-1 and reggie-2 are two evolutionarily highly conserved proteins which are up-regulated in retinal ganglion cells during regeneration of lesioned axons in the goldfish optic nerve. They are located at the cytoplasmic face of the plasma membrane and are considered to be 'lipid raft' constituents due to their insolubility in Triton X-100 and presence in the 'floating fractions'; hence they ...
متن کاملThe reggie/flotillin connection to growth.
The proteins reggie-1 and reggie-2 were originally discovered in neurons during axon regeneration. Subsequently, they were independently identified as markers of lipid rafts in flotation assays and were hence named flotillins. Since then, reggie/flotillin proteins have been found to be evolutionarily conserved and are present in all vertebrate cells - yet their function has remained elusive and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 124 2 شماره
صفحات -
تاریخ انتشار 1997